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1 Introduction

During the semester, we learned about zero-knowledge proofs (ZKP) – a protocol between
two parties – a prover and a verifier, where the prover tries to prove a secret fact or statement
to a verifier without revealing the statement to the verifier. We have used the Easycrypt
proof assistant to formalize these properties.

Our zero-knowledge protocol is an interactive proof system which means that the protocol
must have three properties: completeness, soundness, and zero knowledge [2]. Completeness
assures us that if both parties follow the protocol honestly, the verifier will accept. On the
other hand, Soundness tells us that no “dishonest” prover can convince a verifier that a false
statement is true with a high probability. In our case, this probability should be greater than
or equal to 1/2. Lastly, zero knowledge ensures that no information is leaked during the run
of this protocol besides the truth value of the public statement. In reality, the knowledge
gain is measured under a relaxed measure, where we can argue that it is computationally
not feasible for the verifier to extract any meaningful information or simply that the verifier
has a small probability of obtaining new information.

Some Zero-knowledge proofs are classified under the Σ-protocols umbrella [6]. Σ-protocols
are protocols that have a structure of information flow that resembles a capital Σ. In these
protocols, both the prover and the verifier have access to a claim s, and the prover is supposed
to know a witness x to the claim The communication has four steps. First, the prover creates
a commitment a. This commitment is then shared with the verifier. It is used to increase
the verifier’s trust in the prover’s claim. Next, the verifier generates a challenge and sends it
to the prover. Third, the prover responds to the verifier depending on the challenge that is
given in the previous step. Lastly, the verifier checks the prover’s response and returns its
final answer.

To simplify our discussion, we follow a standard cryptographic naming scheme and use
Alice to refer to the prover and Bob to refer to the verifier. In section 2 we define the
quadratic residue protocol. In Section 3 we present informal “pen and paper” proofs of
completeness, soundness, and zero-knowledge. In Section 4 we describe the work-in-progress
zero-knowledge proof that is the basis of our project. Finally Section 5 we present our
EasyCrypt formalization, and discuss where we succeeded v/s failed.

2 The Protocol

The Quadratic Residue protocol is a communication between two parties, a prover (Alice)
and a verifier (Bob). It is assumed that there is a shared value n ∈ Z, of which both Alice
and Bob are aware. Alice is assumed to have knowledge of a number x ∈ Z∗

n such that for
s ∈ Z∗

n x2 = s Assuming that both parties are not malicious, the communication follows the
following steps:
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Alice Bob
Publish s, a Quadratic Residue of Z∗

n

Draw a value at random from Z∗
n, y

R←− Z∗
n

Send a = y2 to Bob Compute a random bit b
R←− {0, 1}

Send b to Alice

z =

{
y if b = 0
xy if b = 1

Send z to Bob

Verify z2 =

{
a if b = 0
sa if b = 1

Table 1 The steps of the Quadratic Residue ZKP

First, Alice samples a random number y from Z∗
n, and sends a, which is equal to y2, to

Bob. Second, Bob will generate and send a random challenge bit b. Third, Alice sends a
response z to Bob’s challenge. If the challenge bit is 0, z equals y. Otherwise, z equals xy.
Lastly, Bob’s final response is the result of the check if z2 is a if b = 0 or sa if b = 1.

3 Pen and Paper Proofs

There are three properties a zero-knowledge proof needs to have. Completeness, Soundness,
and Zero-knowledge, a rough description of each follows:

Completeness: If Alice and Bob are a honest prover and verifier, then Bob accepts with
probability 1.

Soundness: If Alice is dishonest, meaning she presents a value s that is not a quadratic
residue, then Bob rejects with probability ≤ 1/2.

Zero-knowledge: If Bob is dishonest, then he can learn nothing about the value of x from
interacting with Alice.

All of those properties have three flavors: Perfect, Statistical, and Computational [4].
Those flavors are related to the strength of the property itself. A perfect property states that
something must always happen; in other words, it must have a probability of 1. A statistical
guarantees that something will be valid within some predefined error and without considering
the computational power of both parts. Lastly, A computational property says that a
statement will be valid within some error and considering the computational power involved.
In our work consider Perfect Completeness and Statistical Soundness and Zero-Knowledge.

We present the standard “pen and paper” proofs of these three properties, before discussing
implementations of these proofs in EasyCrypt. Though they are our own work, these proofs
were constructed with help from a set of lecture notes by Boaz Barak [1]. This source
helped provide an understanding of the specific mathematical definition of each of these
properties and demonstrate how to structure these proofs, namely the proof of zero-knowledge
(section 3.3).

3.1 Completeness
▶ Lemma 1. If Alice and Bob are honest provers and verifiers (they follow the protocol
described in section 2), then Pr(Bob accepts) = 1.
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Proof. This lemma is proven by simple computation, we proceed by case analysis on the
challenge bit b:

b = 0 In this case, Alice would respond to the challenge bit by sending z = y and Bob
would verify that z2 = a. By definition, since Alice is honest, a = y2, and z = y, then
z2 = y2 = a This is trivially true.

b = 1 Alice would respond to b by sending z = xy and Bob verifies that z2 = sa. By
definition, s = x2 and since z = yr. Then z2 = (yr)2 = y2r2 = ax.

Therefore, if Alice and Bob are honest, then Bob will accept with probability 1. ◀

3.2 Soundness
If a protocol is Sound, then a dishonest prover cannot consistently convince a verifier of its
knowledge (Pr(reject | dishonest prover) ≥ 1/2). We say a prover is dishonest if the value s,
that it claims is a quadratic residue is not. In other words, Alice is dishonest if she claims to
Bob that s is a quadratic residue when there is no x ∈ Z∗

n such that x2 = s.

▶ Lemma 2. If Alice is a dishonest prover, then Pr(Bob rejects) ≥ 1/2.

Proof. Observe that, Alice sends a to Bob before receiving the challenge bit b. We, therefore,
proceed by casework on a as a malicious Alice must determine a value of a that will trick
Bob regardless of the value of b.
a is a quadratic residue of Z∗

n: Let y2 = a. If b = 1, then Alice needs to send a value z to
Bob such that z2 = ax. However, if z2 = ax, then z2y−2 = (ax)× y−2 = (y2x)× y−2 = x.
Clearly z2y−2 is a quadratic residue of Z∗

n as zy−1 ∈ Z∗
n. This would imply that x is

a quadratic residue of Z∗
n. But this is a contradiction since Alice is a dishonest prover,

we assume x is not a quadratic residue. Therefore, in this case, Bob will reject with a
probability of at least 1/2 since Bob always reject when b = 1.

a is not a quadratic residue of Z∗
n: If y is not a quadratic residue, then when b = 0, Alice

must send some value z to Bob such that z2 = a. However, this is impossible if y is not a
quadratic residue. Therefore, Bob rejects with at least probability 1/2.

These are the only two cases for a. In either case, Bob will reject with a probability of at
least 1/2. Therefore, if Alice is dishonest, Pr(Bob rejects) ≥ 1/2. ◀

3.3 Zero-Knowledge
In 1988, a paper by Feige, Fiat, and Shamir [3] defined Zero Knowledge as:

▶ Definition 3. An interactive proof system of membership in L is zero knowledge, if, for
all inputs restricted to L, for all B and KB its view of the communication in (Ā, B) can be
recreated, by a polynomial-time probabilistic Turing machine M , with an indistinguishable
probability distribution.

Essentially, if Bob is a malicious verifier, attempting to learn more about x. They would do
so by interacting with Alice and from the communication attempt to glean extra information
about x. Therefore, if an equivalent communication (or transcript) could be efficiently
generated by a program with no knowledge of x, then if Bob has no extra information than
the messages exchanged with Alice, he should not be able to learn anything about the true
value of x.



XX:4 Quadratic Residue ZKP in EasyCrypt

Algorithm 1 A simulator for the QR Protocol

y′ R←− Z∗
n

b′ R←− {0, 1}

z′ ←

{
y′2 if b′ = 0
y′2/s if b′ = 1

Communicate with Bob by sending z′ and receive a challenge bit b

if b′ = b then
Communicate with Bob by sending y′2

Publish the transcript
else

Restart the algorithm
end if

We show that the Quadratic Residue protocol is zero-knowledge. First, however, we
define a simulator that will be used in our proof

This simulator attempts to “guess” the value of the challenge bit that Bob will send. If
this value is successfully guessed then the simulator can tailor its choice of z′. If b = 0 Bob
will attempt verify that z′ = y′2. If b′ = 0 then the simulator sets z′ = y′ so clearly this will
succeed. If b′ = 1 then Bob will verify that y′2 = z′ ∗ s. Since the simulator set z′ = y′2/s

then z′ ∗ s = y′2/s ∗ s = y′2. So Bob will always accept the values provided by this simulator.

▶ Lemma 4. The Quadratic Residue ZKP is a Zero Knowledge Protocol

Proof. We claim that Algorithm 1 is a simulator that satisfies these conditions. There are
two facts to prove. First, that the transcript produced by Algorithm 1 is indistinguishable
from a protocol between two honest parties. Second, that this algorithm terminates in
polynomial time.

Note, that there is only one step Alice takes in Section 2 that is random. The first
step, where y is created. This value is generated by drawing randomly from the values of
Z∗

n. Algorithm 1 generates its equivalent value, y′, in the same way so these values are
probabilistically indistinguishable. The only other random action in Algorithm 1 is when b′

is generated. However, Algorithm 1 only terminates if b′ equals the value of b generated by
Bob. Therefore, for any published transcript b′ has the same distribution as b.

So Algorithm 1 produces a transcript that is indistinguishable from a communication
between two honest parties following this protocol. All that is left is to show that Algorithm 1
terminates in expected polynomial time. This is nearly trivial. The algorithm will end
if b′ = b. Both of these values are generated by a uniformly random drawing over {0, 1}.
Therefore, Pr(b′ = b) = 1/2 and so, in expectation, this algorithm should terminate after 2
iterations. ◀

4 EasyCrypt Implementation

We have chosen EasyCrypt as our implementation language because it supports probabilistic
reasoning via game-based proofs. In this theorem prover, we can use different logics to
make probabilistic statements and relate programs involving them. The Ambient logic is the
principal and it is very similar to what we have in Coq. In addition, we have three kinds of
Hoare triples: plain triples, which are used to reassure pre and post-conditions; Probabilistic
Hoare Logic, which is used to reason about probabilities of a single imperative procedure
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call; and Probabilistic Relational Hoare Logic, which is used to relate two different programs
[7]. We could have chosen other tools, such as SSProve [5], but EasyCrypt is a more mature
tool, tailored for this kind of problem and with more learning resources.

Our implementation begins with necessary imports including Bool (for true, false, and
their logical operators), IntDiv (for integer division and related modular arithmetic), DBool
(for distributions on boolean values while sampling), Distr (to define distributions on various
types), DInterval for uniform distributions on the integers, ZmodP provides us an abstract
ring of integers modulo P , and lastly we clone the module defining a ring and rename it
to ZMR. Next, we define an operator zmod_distr as a uniform distribution over the type
zmod. At this point, we are ready to define some types for our game. We start by defining
the representation of our statement, commitment, and witness as the ZmodP type and the
challenge as a boolean. In our protocol, statement refers to the public input s which comes
from the private witness x. The commitment represents the provers chosen number masked
with modular arithmetic, the challenge represents the challenge bit generated by the verifier
which can be one of 0 or 1 in one interaction of the protocol, and finally response is the
response that the prover sends back to the verifier depending on the challenge bit received
from the verifier.

At this stage, we can make our prover and verifier modules. We first define a prover type
as a module that contains procedures for initializing the prover, generating the commitment,
and responding to the verifier’s challenge with their input and output types. Similarly, we
define a verifier module to initialize the verifier, generate and send the challenge bit, and
verify the provers response with all their input and output types as seen below:

module type Prover = {
proc init(s: statement, x:witness): unit
proc gen_commitment(): commitment
proc res_challenge(b:bool): response

}.

module type Verifier = {
proc init(s:statement): unit
proc gen_challenge(c: commitment): challenge
proc verify_res(r: response): bool

}.

The HonestProver and HonestVerifier modules are modules that are parameterized by their
respective type interface — Prover for prover type and Verifier for verifier—. These modules
contain implementations for each of the procedures that we described in their type interface.
The prover module is as follows:

module HonestProver: Prover = {
var s: statement
var x: witness
var y: commitment

proc init(s2:statement, x2:witness): unit = {
s <- s2;
x <- x2;
}
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proc gen_commitment(): commitment = {
y <$ zmod_distr;
return y * y;

}

proc res_challenge(c:challenge): response = {
var resp: response;

if (c) {
resp <- y * x;

}
else {
resp <- y;

}
return resp;

}
}.

We start by declaring the global variables mainly– public statement s, the private witness x,
and the commitment generated by the prover y. The procedure init is similar to a constructor,
which initializes the HonestProvers’ global variables with the statement s2 and witness x2.
gen_commitment is then used to sample a random value y from the uniform distribution
of integers ZMoDP and send the masked value y2 to the verifier. In reality the prover sends
back y2 mod p, but since we are in the group Zp, we can omit writing mod p each time.
Finally, res_challenge is a procedure that responds to the verifiers’ challenge. If the verifier
sends a challenge bit 0 then the prover responds with the original value, y, that was chosen.
Likewise, if the verifier sends a challenge bit 1 then the prover responds with y ∗ x according
to the protocol. Now we will go over the Honestverifier module which is as follows:

module HonestVerifier: Verifier = {
var ch: bool
var s: statement
var a: commitment
proc init( s2:statement): unit = {

s <- s2;
}

proc gen_challenge(c:commitment): challenge = {
a <- c;
ch <$ {0,1};
return ch;

}

proc verify_res(resp: response): bool = {
var result: bool;
if (ch) {

result <- (resp * resp) = (a * s);
}
else {

result <- (resp * resp) = a;
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}
return result;

}
}.

Our Honestverifier module is paramaterized by the Veririfer type. It contains some global
variables including the public challenge bit ch, the public statement s, and a– the commitment
sent back by the prover. We then initialise the verifier with statement s2 using the constructor.
In gen_challenge, the verifier stores the commitment received in variable a. It then chooses
a random challenge bit from the sampling 0, 1 and sends it to the prover. Lastly, the verifier
checks the provers’ response. If the challenge bit was 1, then the verifier checks if the square
of the response received is equal to the product of commitment and statement. Else, if
b = 0, then it checks if the square of the provers’ response is equal to a. In this way, the
verifier learned nothing but the fact that the given statement has a quadratic residue or not.
From this interaction between the HonestProver and Honestverifier modules, we can derive
completeness as shown in the following section.

4.1 Completeness
We model completeness as a game between the Honest Prover and Honest Verifier as seen
below:

module Completeness(HP: Prover, HV: Verifier) = {
proc run(s:statement, x:witness): bool = {
var cm,ch,resp,result;
HP.init(s, x);
HV.init(s);
cm <@ HP.gen_commitment();
ch <@ HV.gen_challenge(cm);
resp <@ HP.res_challenge(ch);
result <@ HV.verify_res(resp);
return result;
}

}.

Within this module is a procedure named run which contains the interaction between the
two modules:
1. It begins by initializing the HonestProver and HonestVerifier.
2. The HonestProver then generates and sends a commitment which is stored in the variable

cm.
3. Next, the HonestVerifier issues a challenge bit and sends it to the HonestProver.
4. Depending on the challenge bit issued by the verifier, the Honestprover sends back a

response which is captured in a variable named resp.
5. The verifier then checks the response sent by the prover and returns a boolean result

depending on whether the check returned true or false.
Next, we formally state and prove our lemma for perfect completeness as follows:

lemma completeness: forall (s: statement) (x: witness), s = x * x =>
hoare[Completeness(HonestProver, HonestVerifier).run : arg = (s,x) ==> res].

proof.
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move => s x H0.
proc. inline*.
wp. rnd. wp. rnd. wp.
skip. simplify. progress. smt(@ZMR).

qed.

Our lemma for completeness is represented as a Hoare triple that contains the preconditions,
program, and post-conditions. Formally, this states that for all statements s and witness
x, if we know a precondition that s = x2 holds and we know that both parties are honest,
then the interaction between the two parties contained in the procedure named run always
succeeds — terminates with the verifier accepting the validity of the claim —. In this case,
arg and res are keywords in easycrypt. arg contains the inputs that were sent to the initial
procedure and res contains the value returned by the procedure. So in our case, res contains
the same value in memory as that of result at the end of our game. For example, if we had
a different prover, that always returned false, we would not be able to complete this proof.
In this aforementioned scenario, we would be required to prove that a boolean is not in the
set {0, 1}, which in EasyCrypt is a contradiction with the definitions of DBool. Following
this, we can now step through the proof one tactic at a time as follows:
1. move: The move tactic helps us to introduce the quantified variables s and x into the

context. It also introduces our precondition or assumption that s = x2 into our context
and renames it to H0.

2. proc: Since the game between HonestProver and Honestverifier contains procedures, we
can unfold these procedures using the tactic proc.

3. inline*: This tactic helps us inline all the procedures that are contained in the Honest-
Prover and HonestVerifier modules. We could also explicitly state all the tactics using
the tactic inline followed by the name of the procedure, but to make it less verbose, we
chose to use the asterisk.

4. At this point our proof has a precondition (s, x), a postcondition res, and the entire
program, which is about 18 lines.

5. wp: Since our goal is a probabilistic Hoare logic statement judgment, which ends with an
ordinary assignment (represented by the ←−) we run wp to consume this assignment and
any if statements replacing the programs post-conditions by the weakest precondition.

6. rnd: Our program now ends with a random assignment so we use rnd to consume it.
7. skip: After multiple such applications of wp and rnd tactics we finally end up with just

pre and post-conditions with no program. So we can use the tactic skip. Skip reduces
the goal we have to an ambient logic formula as an implication between the precondition
and post-condition.

8. Simplify: We run simplify to make reading the goal a bit simpler.
9. Progress: We use progress to break down our given goal into simpler goals. Progress is

a more complex tactic that contains repeated applications of move, substitute, split, and
trivial.

10. smt(@ZMR): At this point, we are just left with modular arithmetic for rings. So we
use smt solvers. Giving smt() the exact name of the library/solver makes it more explicit
to the solver so the solver does not have to search or get lost searching down an incorrect
path.

11. This completes our proof for completeness.
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4.2 Soundness
To define statical Soundness we can start with the definition of a new module type for all
malicious provers. The only difference between this module type and the Prover type is that
it stresses the fact that a dishonest prover does not have access to a witness for the claim.
With this definition, we can define the Soundness game:

module type MProver = {
proc init(s: statement): unit
proc gen_commitment(): commitment
proc res_challenge(b: bool): response

}.

module Soundness(MP: MProver, HV: Verifier) = {
proc run(s:statement): bool = {

var cm,ch,resp,result;
MP.init(s);
HV.init(s);
cm <@ MP.gen_commitment();
ch <@ HV.gen_challenge(cm);
resp <@ MP.res_challenge(ch);
result <@ HV.verify_res(resp);
return result;

}
}.

But, how can we talk about those malicious provers? One naive approach is to have a
concrete implementation; in other words, we would have to fix a specific malicious prover
as our representative candidate for all malicious provers. We could work to find and argue
that a specific malicious prover is the strongest, but this is less general and quickly derailed
our thinking process. Another approach is to simply quantify the overall possible malicious
prover and have a generic representation of a malicious prover. This approach is more general
and goes along with what we have done in our paper proof. With that, we can write a formal
statement for soundness and a formal proof sketch.

lemma soundness: forall (s:statement) (x:witness) (MP <: MProver) &m,
s <> x * x =>
Pr[Soundness(MP, HonestVerifier).run(s) @ &m : res] <= 0.5.

proof.
progress.
byphoare.
proc. inline*.
wp. admit.
trivial.
trivial.

qed.

This lemma states that for every two numbers that are not valid statements and witnesses,
every malicious prover should have at most 50% of chance to convince the verifier. However,
this framing imposes different challenges. Since we have this abstract candidate, we can only
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interact with it through the interface declared in the module type, and we can not use the
same unfolding strategy that we have used in the Completeness proof. This creates some
issues, especially with assignments that the value came from an abstract method. We suspect
that in those cases, we should use the call tactic, but the documentation is not clear about
how we should frame our conditions when working with abstract calls.

The only new tactic used in the previous proof is byphoare. This tactic transforms a
probability hoare statement into just a regular hoare logic statement equipped with some
restriction regarding the probability of the result. Since we are proving statistical Soundness,
we need to work with the probability of success of a single procedure call, and this requires
us to change to the probabilistic Hoare world. Another challenge is that our informal proof is
not intuitionist, we used the law of the excluded middle to reason about if a value is or is not
a quadratic residue. However, in most theorem provers, not every proposition is decidable,
and we need to define extra machinery to enable us to make a similar proof in a formal proof.
For example, we could have added axioms to freely allow this type of argument, just like in
[4].

4.3 Zero-Knowledge
Our third and last property to prove is zero knowledge of our protocol. Intuitively, zero
knowledge, in our case, means that the verifier learns nothing more than that s is a valid
statement. One way to prove zero knowledge is the Real-Ideal paradigm. This paradigm is
from theoretical cryptography and has been used to define security and privacy in the past.
We use the real-ideal paradigm to establish indistinguishability between the real and ideal
protocol execution. Each of these makes a transcript and we will try to prove that these two
transcripts are (probabilistically) indistinguishable. Intuitively speaking, indistinguishability
states that for any malicious party interacting with the real protocol, there exists a simulator
such that the malicious party cannot distinguish whether it is interacting with the real
protocol or the ideal version. The real-ideal paradigm is a straightforward way to formalize
the proof from Section 3.3. We start by defining the real and ideal world as follows:
1. Real scenario: An interaction or run between the honest prover and honest verifier.
2. Ideal scenario: A simulator run that generates a fake transcript that looks like a real one

but is constructed without access to the witness x.
Showing that an adversary (in this case, the verifier) cannot distinguish between the real and
ideal transcripts will prove indistinguishability. Let’s start by looking at the Real scenario
as mentioned below:

module type RealTrans = {
proc generate(s: statement, x: witness): (commitment * challenge * response)

}.

module RealTranscript: RealTrans = {
proc generate(s: statement, x: witness): (commitment * challenge * response) = {

var c, ch, resp;

HonestProver.init(s, x);
HonestVerifier.init(s);

c <@ HonestProver.gen_commitment();
ch <@ HonestVerifier.gen_challenge(c);
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resp <@ HonestProver.res_challenge(ch);

return (c, ch, resp);
}

}.

We use a statement s and witness x. We start by initializing the honest prover and
honest verifier modules. This protocol generates the transcript using the HonestProver and
HonestVerifier interaction. We have the commitment c, the value generated by the prover
whose square is sent to the verifier, a challenge bit b, and a response named resp. We return
a tuple consisting of the commitment, challenge bit, and response to ensure that the verifier
can reconstruct the entire transcript to verify the interaction. We do not add the witness x

to the tuple since that would mean we would leak private information. Now we can look at
the Ideal scenario as follows:

module type Simulate = {
proc init(s2: statement): unit
proc simulate(s: statement): (commitment * challenge * response)
}.

module Simulator: Simulate = {
var s: statement
var b: bool
var c: response

proc init(s2: statement): unit = {
s <- s2;

}

proc simulate(s: statement): (commitment * challenge * response) = {
var resp: commitment;
var s’: commitment;

(* Use s as input *)
b <$ {0,1};
c <$ zmod_distr;

if (b) {
s’ <- inv s;
resp <- (c * c) * s’;

} else {
resp <- c * c;

}

return (resp, b, c);
}

}.
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This module produces a transcript that mimics the real protocol but does not depend on the
knowledge of the witness x chosen by the prover. The simulator module consists of global
variables, which store the public statement provided during initialization, a challenge bit
randomly generated, and a variable c to store the fake commitment and procedures init
and simulate. We start by defining the interface for our simulator which consists of two
procedures– one to initialize state and a second to simulate the execution of a protocol given
a statement s. The procedure init initializes the simulator with the public statement s2.
Then the procedure simulate returns a tuple containing the commitment, challenge, and
response. It starts using local variables named resp and s’ of type commitment, it then
picks the challenge bit randomly from the sampling and a value from Zp. In the case that
the challenge bit is 1 it returns c2/s. In our easycrypt implementation, since we are using
the numbers ZModP, division wasnt available so we have multiplied the square of c with
the inverse of s. The inverse of s was calculated and stored in another variable (of type
commitment as seen above but really commitment is of type ZmodP so s’ is of type ZmodP)
s’. We then use this s’ to compute the response when the challenge bit was 1. Now in the
case of the challenge bit b being 0, we compute the response as the square of c. These
calculations follow directly from our pen and paper proof. As mentioned before, the simulator
generates outputs in the form of a tuple containing (resp, b, c) that are distributed identically
to the real protocol outputs despite lacking a witness x. By matching this format we get one
step closer to mimic the indistinguishability of the output structure. Since we are trying to
prove indistinguishability of protocols that contains samplings from uniform distributions,
the transcript generated is never going to be identical, thus we need a tool that reasons
about program equivalence in the presence of probabilistic outcomes. We use probabilistic
relational Hoare logic (pRHL) to encode indistinguishability between our runs of the real
and ideal scenario or protocol. We can now look at our lemma for zero knowledge and step
through its proof one at a time as seen below:

lemma zero_knowledge:
forall (s: statement) (x: witness),

equiv[ RealTranscript.generate ~ Simulator.simulate :
s{1} = s{2} ==> res{1} = res{2} ].

proof.
move => s x.
proc; inline*.
wp.
rnd{1}.
rnd{2}; rnd{2}.
wp.
rnd{1}.
wp.
skip.
progress.
apply zmoddistr_ll.
apply zmod_resp_y_squared_c_squared.
apply zmoddistr_ll.
apply zmod_resp.
apply zmoddistr_ll.
case ch0.
trivial.
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admit.
have contrad: b.
admit.
trivial.
apply zmod_resp_y_squared_c.
apply zmoddistr_ll.
admit.
qed.

Our lemma states that for all (public) statements s and (private) witness x, our programs
produce indistinguishable outputs. Our precondition for equivalence states that both the
procedures are given the same public statement s and our post-condition ensures that
our outputs, stored in res, are indistinguishable under the precondition given. The equiv
keyword in EasyCrypt is used to write a pRHL judgement. This lemma proves that the
verifier (adversary) cannot distinguish between the real transcript (generated using x) and the
simulated transcript (generated without x), that the outputs of our program are statistically
indistinguishable. Lastly, the simulator can mimic the real world without knowing x which
helps us prove that no information has been leaked during this interaction. Note that our
current proof is incomplete due to time constraints. Now we can step through the proof and
understand each tactic
1. move: We use the tactic move to introduce our universally quantified variables s and x

into our context. At this point, we end up with a precondition, our program equivalence
statement, and our post-condition.

2. proc; inline*: We then use proc to unfold all the procedures and inline* to unfold all
the procedures within the Simulate and generate. The ; is used to combine or merge
two tactics into one. In the end, this gives us two programs labeled with 1 and 2 on the
screen.

3. wp: Both our programs end with either a simple assignment or an if statement, so we use
the tactic wp, which stands for weakest precondition. This consumes any if statements
and ordinary assignments and replaces the program’s post-condition by the weakest
precondition.

4. rnd1: At this point, we see that program 1 ends with a random sampling, so we run
rnd1 on this program to consume this random sampling. rnd2; rnd2: Next, we see
that program 2 ends with two random samplings, so we run rnd2 twice to consume these
random samplings and we merge this using the ; per Easycrypt format.

5. wp: Since we see that program 1 ends with an ordinary assignment, we run wp to
consume that.

6. rnd1: At this point, we noticed that our program 1 ends with a random sampling, so we
run rnd on it.

7. wp: We now see that program 2 is empty and program 1 only consists of simple
assignments, so we can run the weakest precondition to consume all these assignments.

8. skip: Since our goal state is a statement judgment with an empty program, we can use
skip to reduce it to the goal whose conclusion is the ambient logic formula precondition
=⇒ post-condition. Our precondition is the original precondition we started with.

9. Progress: We now use progress to break down our given goal into smaller goals, and
progress will apply tactics like move, split, trivial, etc. until it cannot reduce the current
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goal anymore. After this, we ended up with a goal islossless zmod_distr since our program
had random samplings.

10. apply zmoddistr_ll: For each random sampling, Easycrypt introduces a proof obli-
gation to ensure that the distribution is lossless. This is Easycrypt confirming that the
distribution Zmod_distr, which is used for c is lossless meaning that zmod_distr specifies
a uniform distribution for Zp aka all numbers are equally likely. In order to resolve
this goal, we wrote an axiom that defines that Zmod_distr is a well-defined and lossless
distribution. We repeat applying this axiom whenever this goal shows up.

11. apply zmod_resp_y_squared_c_squared: We then have a goal state that contains
y ∗ y = (c2 ∗ c2)/s and since we know that this should hold, we write another axiom
named zmod_resp_y_squared_c_squared to work with modular arithmetic and make
progress.

12. apply zmod_resp.: We end up with an equation y ∗ x1 = c2 so we write an axiom to
make progress.

13. case ch0: At this point, we can do a case analysis on the challenge bit. The first subgoal
is trivial but the second subgoal is admitted due to time constraints.

14. have contrad: b: At this point we have a false in the conclusion and the way we proved
this is by proving a contradiction. In eascyrpt we need to define a sub-lemma and prove
that that is a contradiction. The first sub-goal generated by this contradiction is admitted
but the second is trivial.

15. apply zmod_resp_y_squared_c: We now end up with a goal state like y ∗y = c2∗c2
so we have written an axiom to prove this and make progress.

16. We have admitted a total of 3 goals due to time constraints.
17. This completes our proof of zero knowledge using the Real-Ideal paradigm.
Thus attempting the proof that the real and simulated transcripts are indistinguishable
under the condition that the public statements remain consistent between them. This result
guarantees that the verifier learns nothing about the prover private witness x beyond the
validity of the statement s = x× x and it suffices to prove Statistical Zero-Knowledge.

5 Conclusion

This project was more challenging than we previously assumed. Initially, we used integers as
our main data type in our implementation. However, we quickly got stuck with how we work
with sampling. EasyCrypt represents samples using a special mu operator. However, we did
not find documentation on how we could work with this operator. So we decided to check
how previously published work [4] solved those issues.

We quickly noticed that they used a different data type, zmod, which represents the
group of integers modulo a p where p is a prime number. This datatype ended up simplifying
our workflow because it has an implicit module on every operation and also utilizes many
properties that are only valid when our module is a prime number. After seeing that, we
decided to change the main data type, and surprisingly, samples from zmod used lambdas,
which are simpler to work with. This made our correctness proof a bit straightforward and
succinct.

The next challenge we faced was related to the Soundness statement. At this first moment,
we were not sure about what was the exact definition of a malicious prover and how we could
talk about every possible malicious prover. After some time we decided again to look for
insight in [4], but we quickly noticed that our paths already have diverged. In that work,
they use the concept of rewindability to prove all the other properties besides completeness.
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However, this is not something that EasyCrypt can do natively, so they abused axioms to
make this machinery work, weakening their formal proofs. We decided to try to finish our
proof using the same strategy as used in our informal proofs, but we did not manage to
fully implement it. A similar situation happened with the zero-knowledge proof, but we
attempted to use the Real/Ideal paradigm without using rewindability.

Another challenge we faced was implementing zero knowledge. Even though the concept
of indistinguishability is intuitively not as hard to grasp as we originally thought, the details
of implementation in Easycrypt using probabilistic hoare logic are not trivial. We had to
follow closely with the pen and paper proof to model our simulator and make sure the types
aligned. Coming up with pre and post-conditions was a challenge but it made sense to us
that the given interaction will hold if and only if the real and ideal scenarios have been given
the same initial statement. So this was made as a precondition. For the post-conditions,
since we had to reason about indistinguishability between the generated transcripts we chose
to ensure that the simulators output is indistinguishable from the real provers using the
EasyCrypt’s keyword res. Coming to the proof, we got stuck on the modular arithmetic
segments so we decided to use axioms to make progress. One thing to improve on here would
be to rewrite all the axioms as lemmas and prove each lemma before applying it.

Currently, our framework consists of a prover and verifier type and its corresponding
interface implementation and related games to model the interactive proof of quadratic
residues. The quadratic residue problem falls under a class of protocols called Σ-Protocols,
our framework can be generalized to other Σ-protocols – with obvious changes to the prover
and verifier due to the different procedures– but beyond that, we will have to spend some
more time to think of how to implement those non Σ-protocols and how their implementation
will differ from those with sigma protocols.
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